

Minimum X-ray source size for a lamppost corona in light-bending models for AGN

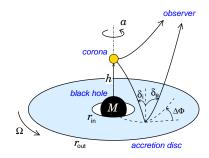
Michal Dovčiak

Chris Done

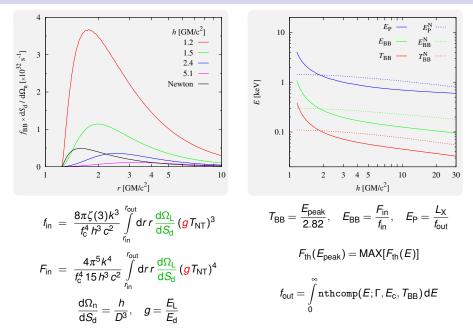
Astronomical Institute of the Czech Academy of Sciences, Prague **Durham University**

From the Dolomites to event horizon: Sledging down the Black Hole potential well (3rd ed.) Sexten Center for Astrophysics, Sesto, Italy 13th-17th July 2015


Scheme of the lamp-post geometry

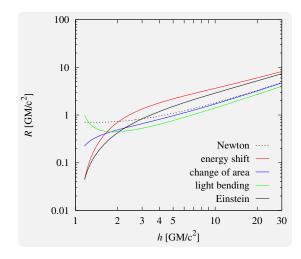

- central black hole mass, spin
- accretion disc
 - \rightarrow Keplerian, geometrically thin, optically thick
 - \rightarrow Novikov-Thorne thermal emission

 $(T_{\rm NT}, M, \dot{M} = \frac{L_{\rm b}}{\eta c^2}, a, f_{\rm c})$

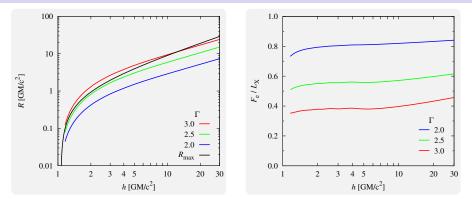

- ► compact corona with isotropic emission → height, luminosity, size (radius), optical depth (h, L_X or L_{obs} , R, τ)
- up-scattering in the corona \rightarrow nthcomp(E; Γ , E_c , T_{BB})
- relativistic effects:
 - \rightarrow Doppler and gravitational energy shift
 - \rightarrow light bending (lensing)
 - \rightarrow aberration (beaming)

$$M = 10^7 M_{\odot}, L_{\rm b} = L_{\rm Edd},$$

 $a = 0.998, \eta = 32.4\%, f_{\rm c} = 2.4$



Thermal photon flux arriving at corona



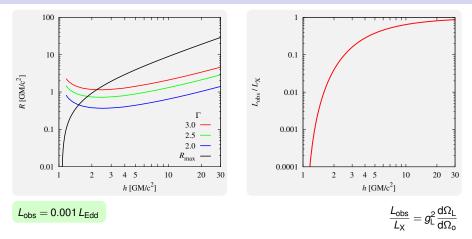
Size of the corona - components

$$(1 - e^{-\tau}) f_{\rm in} dS_{\rm L} = f_{\rm out}$$
$$R = \sqrt{\frac{1}{\pi} \frac{g_{\rm L}}{1 - e^{-\tau}} \frac{f_{\rm out}}{f_{\rm in}}}$$

Size of the corona - constant intrinsic luminosity

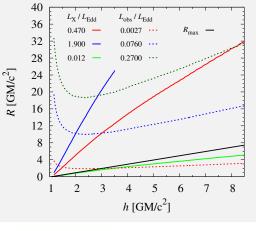
 $L_{\rm X} = 0.031 L_{\rm Edd}$ ($L_{\rm obs} = 0.02 L_{\rm Edd}$ at $h = 10 \, GM/c^2$)

$$\Sigma_e = \frac{\tau}{\sigma_t} \sim 10^{23} - 10^{24}\,\text{cm}^{-2}$$


$$n_{\rm e} = \frac{\Sigma_{\rm e}}{I} \sim 10^9 - 10^{12} \, {\rm cm}^{-3}$$

Г	τ	
2	0.85	
2.5	0.4	
3	0.2	

computed with compps


$$\frac{F_{\rm e}}{L_{\rm X}} = 1 - \frac{F_{\rm in}}{L_{\rm X}} \frac{f_{\rm out}}{f_{\rm in}}$$
$$(1 - e^{-\tau}) f_{\rm in} dS_{\rm L} = f_{\rm out}$$
$$R = \sqrt{\frac{1}{\pi} \frac{g_{\rm L}}{1 - e^{-\tau}} \frac{f_{\rm out}}{f_{\rm in}}}$$

Size of the corona - constant observed luminosity

What size of the corona is needed for the given observed luminosity if the corona is at height *h*?

Application to 1H0707-495

 $F_{0}(0.3 - 10 \text{keV}) =$

 $2 \times 10^{-13} - 2 \times 10^{-11}$

erg cm⁻² s⁻¹

- dotted red \rightarrow size for the minimum L_{obs}
- Solid red → size for the light bending scenario, L_X set from the minimum L_{obs} at h = 1.5
- ► dotted dark green → size for the maximum L_{obs}
- ► dotted blue → size for the average L_{obs}
- Solid blue → size for the light bending scenario, L_X set from the average L_{obs} at h = 2
- Solid green → size for the light bending scenario, L_X set from the minimum L_{obs} at h = 3.5 → pure light bending scenario cannot reach maximum L_{obs}

$$L_{\text{obs}} = 4\pi D^2 F_0(0.3 - 10 \text{keV}) \frac{\int\limits_{0}^{\infty} E \operatorname{nthcomp}(E; \Gamma, E_c, T_{\text{BB}}) dE}{\int\limits_{0.3/g_{\text{L}}}^{0} E \operatorname{nthcomp}(E; \Gamma, E_c, T_{\text{BB}}) dE}$$

General conslusions:

- ► for reasonable assumptions the corona is not tiny but still may be quite small (even of the order of $1 10r_g$),
- in light bending scenario with inverse Compton the corona has to change size (geometry), it scales with height,
- for larger Γ we need smaller τ and both increase R,
- point-source approximation is not valid, **3D** computations with non-spherical geometry and corona rotation are needed for more accurate corona size (and shape) estimation.

Conclusions

Conslusions on 1H0707-495:

- due to high observed flux in 1H0707-495, in the pure light bending scenario the small spherical patch of corona does not fit above the horizon,
- ► Wilkins & Fabian (2012) reproduce the steep radial emissivity with an extended corona (up to 30R_g) at low height (2R_g),
- such an extended corona probably cannot change its emissivity to 100× larger luminosity either through light bending scenario or by extending it even further outside,
- thus could the inner accretion have higher temperature to produce more photons? (the disc in our assumptions already shines at L_{Edd}),

- however, the steep decrease of radial emissivity might be artificial due to wrong assumptions on local emission directionality and radial decrease of ionisation, see Svoboda et al (2012) and his poster,
- ► thus the extension may be much smaller (2 r_g at height 2 3 r_g) and maybe the maximum flux could be explained by changing corona size and geometry, e.g. by extending it further outside (20 r_g at height 2 - 3 r_g)?
- 3D computations with non-spherical geometry and corona rotation are needed for more accurate estimations.