The Nuclear Spectroscopic Telescope Array
Extragalactic Program

Andrea Marinucci
Università degli Studi Roma Tre
on behalf of the NuSTAR team

INTEGRAL Workshop 2013
NuSTAR
bringing the high energy universe into focus

NASA Small Explorer (SMEX) mission
Launch Date: June 13, 2012
Phase E (science operations) Start Date: August 1, 2012
P.I.: Fiona Harrison (Caltech)
Project Scientist: Daniel Stern (Caltech)
http://nustar.caltech.edu
INTEGRAL, Swift BAT

high background, large detector

NuSTAR

low background, compact detector
Pegasus launch from Kwajelein (June 13 2012): low earth orbit, 550x600 km, low inclination, 6°
Ground Station: Malindi, Kenya (thanks!)
Satellite (instrument)	Sensitivity
INTEGRAL (ISGRI) | ~0.5 mCrab (20-100 keV) with >Ms exposures
Swift (BAT) | ~0.8 mCrab (15-150 keV) with >Ms exposures
NuSTAR | ~0.8 μCrab (10-40 keV) in 1 Ms

NuSTAR two-telescope total collecting area
Imaging

- HPD: 58”
- FWHM: 18”
- Localization: 2” (1-sigma)

Field of View

- FWZI: 12.5’ x 12.5’
- FWHI: 10’ @ 10 keV
 - 8’ @ 40 keV
 - 6’ @ 68 keV

Spectral response

- Energy range: 3-79 keV
- Threshold: 2.0 keV
- ΔE @ 6 keV: 0.4 keV FWHM
- ΔE @ 60 keV: 1.0 keV FWHM

Timing

- Relative: 100 microsec
- Absolute: 3 msec

Target of Opportunity

- Response: < 24 hr (reqmt)
- Typical: 6-8 hours
- 80% sky accessibility

1 Ms Sensitivity

- 3.2 x 10^{-15} erg/cm²/s (6 – 10 keV)
- 1.4 x 10^{-14} (10 – 30 keV)
The Galactic Center

INTEGRAL (2005) (2° x 0.8°)

Galactic surveys: locate remnants of collapsed stars (white dwarfs, neutron stars, black holes) to study the endpoints of stellar evolution

NuSTAR simulation (2012)
Resolving the Core of NGC 1365 in High Energy X-Rays
The galaxy IC 342, ULX-1/2 resolved for the first time above 10 keV
NuSTAR Extragalactic Surveys: Resolving the Hard X-Ray Background

peaks at ~30 keV

constrains the accretion history of the universe, e.g., the formation history of supermassive black holes

requires a population of heavily obscured AGN

NuSTAR Extragalactic Surveys: Resolving the Hard X-Ray Background

pluses = Chandra Deep Fields/GOODS
diamond = XMM Lockman Hole

INTEGRAL/Swift

1-2 %
30 keV

NuSTAR Extragalactic Surveys: Resolving the Hard X-Ray Background

NuSTAR’s “first born”
• NuSTAR (in purple) serendipitous source in field of IC751

NuSTAR Extragalactic Surveys: Resolving the Hard X-Ray Background

- 3-tiered survey:
 - ECDFS - deep
 - COSMOS - medium
 - Swift/BAT serendipitous survey (+ all NuSTAR fields) - “shallow”

- Median redshift for Swift/BAT: $z \sim 0.03$
- Median redshift for NuSTAR: $z \sim 0.7$

Mullaney et al., in prep.
NuSTAR AGN Physics:
fundamental questions

- What are the physical properties of the so-called corona?
- What is the distribution of SMBH spins?
- What is the nature of the soft X-ray excess?
- How are jets triggered? What is their role in feedback?
- What physical processes create the absorbing structures in AGN?

Urry & Padovani (1995)
NuSTAR AGN Physics:
simultaneous XMM & Suzaku campaigns

- **Science goals**: SMBH spin, coronal properties

- **Suzaku AO-7**: 3 sources, ~310 ks, **focus on corona**
 - ✓ 3C 273*
 - ✓ NGC 4151
 - ✓ IC 4329A

- **XMM AO-11**: 6 sources, ~1.5 Ms, **focus on SMBH spin**
 - ✓ 3C 273*
 - ✓ NGC 1365
 - ✓ MCG—6-30-15
 - ✓ Ark 120
 - ✓ 3C 120 (also Swift to check for inner disk disruption)
 - ✓ SWIFT J2127.4+5654
NuSTAR AGN Physics: the importance of spectral shape

• Spin alters shape of Fe K line and Compton hump in predictable, measurable ways.

• Shape of Comptonized continuum determined by kT, τ of coronal plasma.

• We know that $E_{\text{cut}} \sim 3kT$, so measuring E_{cut} helps break degeneracy.
NuSTAR AGN Physics:
first result on the BH spin in NGC 1365
NuSTAR AGN Physics: first result on the BH spin in NGC 1365

Risaliti et al. 2013, Nature
NuSTAR AGN Physics: a long look to MCG-6-30-15

300 ks simultaneous XMM-NuSTAR Absorption and reflection models tested in a detailed time resolved analysis

Marinucci et al., in preparation
Brenneman et al., in preparation
Kara et al., in preparation
NuSTAR AGN Physics: comptonization effects in Ark 120

Optxagnf (Done et al. 2012) is a disk/corona emission model which assumes a thermal disk emission outside the coronal radius, and soft and hard Comptonization inside.

Matt et al., in preparation
NuSTAR AGN Physics:
coronal properties of IC4329 A

- XIS-BI
- FPMA
- FPMB
- PIN

$\Gamma = 1.71$
$E_{\text{cut}} = 156 \pm 23$ keV
$R = 0.31$
Fe/solar = 0.92

Brenneman et al., in preparation

- 150 ks observation in August 2012

$\cdot kT = 40 \pm 5$ keV
$\tau = 1.44 \pm 0.03$ (slab)
$\tau = 3.41 \pm 0.10$ (sphere)
NuSTAR AGN Physics: coronal properties of MCG-5-23-16

Ec = 100 ± 10 keV
Baseline Science Mission

• As typical for an Explorer, all baseline observations led by the science team
• mixture of Level 1 and Priority A targets (with fair amount of margin in reserve)
• After the current initial calibration period is completed, observations will go public through HEASARC two months after a data set is completed (next data release will be Oct. 31st)
• 1.5 Ms of NuSTAR to be made available for coordinated observations with next XMM AO (factor 6 oversubscription)
• A paper a week is being submitted by now, for a complete list of accepted/published paper:

http://www.nustar.caltech.edu/for-astronomers/publications/refereed-papers

• ~140-person international science team broken into 13 science working groups:
Baseline Science Mission

<table>
<thead>
<tr>
<th>Science Group</th>
<th>Working Group Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galactic Surveys, Galactic Center</td>
<td>Chuck Hailey</td>
</tr>
<tr>
<td>Supernovae and ToOs</td>
<td>Steve Boggs</td>
</tr>
<tr>
<td>Supernova remnants and Pulsar Wind Nebulae</td>
<td>Fiona Harrison</td>
</tr>
<tr>
<td>Magnetars and Rotation Powered Pulsars</td>
<td>Vicky Kaspi</td>
</tr>
<tr>
<td>Galactic Binaries</td>
<td>John Tomsick</td>
</tr>
<tr>
<td>Ultraluminous X-ray Sources</td>
<td>Fiona Harrison</td>
</tr>
<tr>
<td>Extragalactic Surveys</td>
<td>Daniel Stern</td>
</tr>
<tr>
<td>Blazars and Radio Galaxies</td>
<td>Greg Madejski, Paolo Giommi</td>
</tr>
<tr>
<td>Obscured AGN</td>
<td>Daniel Stern</td>
</tr>
<tr>
<td>AGN Physics</td>
<td>Giorgio Matt</td>
</tr>
<tr>
<td>Galaxy Clusters</td>
<td>Allan Hornstrup, Silvano Molendi</td>
</tr>
<tr>
<td>Starburst Galaxies</td>
<td>Ann Hornschemeier</td>
</tr>
<tr>
<td>Solar Physics</td>
<td>David Smith</td>
</tr>
</tbody>
</table>

http://www.nustar.caltech.edu (look under ‘for astronomers’)
Thanks!