

The X-ray Imaging Polarimeter Explorer

Giorgio Matt Univ. Roma Tre, Italy

on behalf of the XIPE Study Science Team

www.isdc.unige.ch/xipe

Introduction

Information on celestial (extra-solar) sources are mostly provided by electromagnetic radiation.

They can be obtained by studying the spatial, spectral, timing and *polarization* properties of the observed radiation.

In particular, the polarization properties give us information on *geometry* (in a broad sense: geometry of the emitting matter but also of magnetic and gravitational fields, of space-time, etc.): the polarization degree depends on the level and type of symmetry of the system, the polarization angle indicates its orientation.

Our knowledge of the emission from a celestial source in a certain energy band is therefore incomplete without polarimetry.

However, polarimetric informations of astrophysical sources are basically missing in the X-ray band !

Introduction

Polarimetry has proved very important in radio, IR and optical bands (eg. jet emission in blazars, Unification Model of AGN, ...).

In X-rays, where non-thermal emission processes and aspherical geometries are likely to be more common than at lower energies, polarimetry is expected to be vital to fully understand emitting sources.

However, only one measurement (P=19% for the Crab Nebula, indicating synchrotron emission) has been obtained so far, together with a tight upper limit to Sco X-1.

These measurements have been obtained in the 70s, for the two brightest sources in the X-ray sky.

The lack, for many decades, of significant technical improvements implied that no polarimeters were put on board of X-ray satellites.

Why X-ray polarimetry?

Why XIPE?

The situation has changed dramatically with the advent of polarimeters based on the photoelectric effect. Such detectors, on the focal plane of a

X-ray telescope, may provide astrophysically interesting measurements for hundreds of sources (remember that polarimetry is a photon hungry technique...). The brightest specimens of all major classes of X-ray sources are now accessible!

<u>Time is ripe for a X-ray polarimetric mission !</u>

Indeed, a X-ray polarimeter was part of the focal plane suite of detectors of XEUS/IXO, but it did not survive the severe descooping towards Athena.

A X-ray polarimetric mission, GEMS, was approved by NASA as a SMEX but later cancelled for programmatic reasons.

And finally, XIPE has been selected for a phase A study in ESA M4 (together with Ariel, devoted to exoplanets, and Thor, a solar magnetosphere mission; final down-selection in Spring 2017).

XIPE will perform spectrally-, spatially- and time-resolved polarimetry of hundreds of celestial sources to provide a breakthrough in astrophysics and fundamental physics

Why X-ray polarimetry?

XIPE goals

Astrophysics

Acceleration phenomena

Pulsar wind nebulae

SNRs

Jets

Emission in strong magnetic fields

Magnetic cataclysmic variables Accreting millisecond pulsars Accreting X-ray pulsars Magnetars

Scattering in aspherical situations

X-ray binaries Radio-quiet AGN X-ray reflection nebulae Fundamental Physics Matter in Extreme Magnetic Fields: QED effects Matter in Extreme Gravitational Fields: GR effects Galactic black hole system & AGNs Quantum Gravity Search for axion-like particles

XIPE will observe almost all classes of X-ray sources

A large community involved (as for the proposal):

17 countries

146 scientists

68 institutes around the world

Astrophysics: Acceleration: PWN - The Crab Pulsar

Radio polarisation

IR polarisation

Optical polarisation

X-ray polarisation

X-rays probe **freshly accelerated** electrons and their acceleration site.

Astrophysics: Acceleration: PWN

- The OSO-8 observation, integrated over the entire nebula, measured a position angle that is tilted with respect to the jets and torus axes.
- What is the role of the magnetic field (turbulent or not?) in accelerating particles and forming structures?
- XIPE imaging capabilities will allow us to measure the pulsar polarisation by separating it from the much brighter nebula emission.
- Other PWN, up to 5 or 6, are accessible for larger exposure times (e.g. Vela or the "Hand of God").

Astrophysics: Acceleration: SNR

Map of the magnetic field

Spectral imaging allows to separate the thermalised plasma from the regions where shocks accelerate particles.

What is the orientation of the magnetic field? How ordered is it? The spectrum cannot tell...

4-6 keV image of Cas A blurred with the PSF of XIPE

Region	MDP (%)	σdegree (%)	σangle (deg)
		if P	=11%
1	3.7	±1.2	±3.2
2	4.3	±1.3	±3.7
3	3.2	±1.0	±2.8
4	4.6	±1.4	±4.1
5	3.0	±0.9	±2.6
6	5.3	±1.7	±4.5
7	5.4	±1.7	±4.9

2 Ms observation with XIPE

Astrophysics: Acceleration: Unresolved Jets in Blazars

Schematic view of an AGN

Blazars are those AGN which not only have a jet (like all radiogalaxies), but it is directed towards us.

Due to a Special Relativity effect (aberration), the jet emission dominates over other emission components

Astrophysics: Acceleration: Unresolved Jets in Blazars

Blazars are extreme accelerators in the Universe, but the emission mechanism is far from being understood.

In inverse Compton dominated Blazars, a XIPE observation can determine the origin of the seed photons:

• Synchrotron-Self Compton (**SSC**) ? The polarization angle is the same as for the synchrotron peak.

• External Compton (**EC**) ? The polarization angle may be different.

The polarization degree determines the electron temperature in the jet.

Astrophysics: Acceleration: Unresolved Jets in Blazars

Blazars are extreme accelerators in the Universe, but the emission mechanism is far from being understood.

In synchrotron-dominated X-ray Blazars, multi- λ polarimetry probes the structure of the magnetic field along the jet.

Models predict a larger and more variable polarisation in X-rays than in the optical.

Coordinated multi-wavelength campaigns are crucial for blazars.

Such campaigns (including polarimetry) are routinely organised and it will be easy for XIPE to join them.

Astrophysics: Acceleration: Resolved Jets in Radiogalaxies

In nearby, non-blazar radiogalaxies, the jet may be resolved.

XIPE can map the X-ray polarisation and thus the magnetic field of resolved X-ray emitting jets.

MDP for the jet of Centaurus A is 5% in 1 Ms in 5 regions.

The extended (4') radio jet in Cen A.

Astrophysics: Strong Magnetic Fields: Cataclysmic variables

Accretion in Magnetic Cataclysmic Variables occurs in accretion column.

Main emission process is thermal bremsstrahlung, but scattering may be relevant. Polarization gives informations on the accretion mode (Matt 2004; McNamara et al, 2008)

Matt 2004

Astrophysics: Strong Magnetic Fields: Accreting Millisecond Pulsars

Emission due to scattering in hot spots

 \Rightarrow

Phase-dependent linear polarization

Xipe 💒

Viironen & Poutanen 2004

Astrophysics: Strong Magnetic Fields: Accreting X-ray Pulsars

Opacity in highly magnetized plasma

 $\Rightarrow \quad \mathbf{k}_{\perp \neq k\parallel}$

Phase-dependent linear polarization From the (phase-resolved) swing of the polarisation angle :

Orientation of the rotation axis and inclination of the magnetic field (required for many purposes, e.g. measure of mass/radius relation)

Meszaros et al. 1988

Astrophysics: Strong Magnetic Fields: Accreting X-ray Pulsars

٨Ē B 2 3.000 "pencil beam" "fan beam" ee falling plasma ¥ † ŕ shock slowly sinking plasma 14 η**11**η \sim -----. 11 \$35 - \sim layer of radiation neutron star neutron star

"Fan" vs. "Pencil" beam

Meszaros et al. 1988

Astrophysics: Scattering: Coronae in X-ray binaries & AGN

The geometry of the hot corona, considered to be responsible for the (non-disc) X-ray emission in binaries and AGN, is largely unconstrained.

The geometry is related to the corona origin:

- Slab high polarisation (up to more than 10%): disc instabilities?
- Sphere very low polarisation: aborted jet?

Astrophysics: Scattering: Coronae in X-ray binaries & AGN

The geometry of the hot corona, considered to be responsible for the (non-disc) X-ray emission in binaries and AGN, is largely unconstrained.

The geometry is related to the corona origin:

- Slab high polarisation (up to more than 10%): disc instabilities?
- Sphere very low polarisation: aborted jet?

Marin & Tamborra 2014

Astrophysics: Scattering: X-ray reflection nebulae in the GC

Cold molecular clouds around Sgr A^{*} (i.e. the supermassive black hole at the centre of our own Galaxy) show a neutral iron line and a Compton bump \rightarrow Reflection from an external source!?!

No bright enough sources are in the surroundings. Are they reflecting X-rays from Sgr A*? so, was it one million times brighter a few hundreds years ago? Polarimetry can tell!

Astrophysics: Scattering: X-ray reflection nebulae in the GC

Polarization by scattering from Sgr B complex, Sgr C complex

- The angle of polarisation pinpoints the source of X-rays
- The degree of polarization measures the scattering angle and the true distance of the clouds from Sgr A*.

determines

Fundamental Physics: Matter in extreme magnetic fields: QED effects

Magnetars are isolated neutron stars with likely a huge magnetic field (B up to $10^{15 \text{ Gauss})}$.

It heats the star crust and explains why the X-ray luminosity largely exceeds the spin down energy loss.

QED foresees vacuum birefringence, an effect predicted 80 years ago (Eisenberg & Euler 1936), expected in such a strong magnetic field and never detected yet.

Such an effect is **only** visible in the phase dependent polarization degree and angle.

Fundamental Physics: Strong Gravitational Fields: GR effects in XRB

Black holes are fully characterized by their mass and angular momentum (spin, indicated with a) (+Q)

Knowledge of the spin tells us about the BH birth (in Galactic black holes) or the BH growth (in galaxies).

So far, three methods have been used to measure the BH spin in XRBs:

- 1. Relativistic reflection (still debated, requires accurate spectral decomposition);
- 2. Continuum fitting (requires knowledge of the BH mass, distance and inclination);
- 3. QPOs (all three QPOs required to completely determine the parameters, so far applied only to two sources).

Fundamental Physics: Strong Gravitational Fields: GR effects in XRB

For a number of XRBs, the three methods do not agree!

Example: J1655-40:

QPO: $a = J/Jmax = 0.290 \pm 0.003$ Continuum: $a = J/Jmax = 0.7 \pm 0.1$ Iron line:a = J/Jmax > 0.95

Energy dependent rotation of the X-ray polarisation plane

- Two observables: polarisation degree & angle
- Two parameters: disc inclination & black hole spin

Fundamental Physics: Loop QG and search for Axion-like particles

Search for energy-dependent birefringence effects on distant polarized sources (e.g. Blazars) may put tighter constraint on QG theories (e.g. Loop Quantum Gravity).

Variations of polarization angle and degree from sources in the background of large regions with significant magnetic field (eg clusters of galaxies) may indicate the presence of Axion-like particles, a candidate to be one of the dark matter main ingredients.

Very challenging measurements, but potentially very rewarding!!

The energy band

XIPE Science Requirements

The energy band

Scientific goal	Sources	< 1keV	1-10	> 10 keV
Acceleration phenomena	PWN	yes (but absorption)	yes	yes
	SNR	no	yes	yes
	Jet (Microquasars)	yes (but absorption)	yes	yes
	Jet (Blazars)	yes	yes	yes
Emission in strong magnetic fields	WD	yes (but absorption)	yes	difficult
	AMS	no	yes	yes
	X-ray pulsator	difficult	yes (no cyclotron)	yes
	Magnetar	yes (better)	yes	no
Scattering in aspherical	Corona in XRB & AGNs	difficult	yes	yes (difficult)
geometries	X-ray reflection nebulae	no	yes (long exposure)	yes
Fundamental Physics	QED (magnetar)	yes (better)	yes	no
	GR (BH)	no	yes	no
	QG (Blazars)	difficult	yes	yes
	Axions (Blazars, Clusters)	yes?	yes	difficult

Xipe 💉

XIPE Science Requirements

Parameter	Quantity	Scientific driver
	Scientific	
	requirements	
Polarimetric sensitivity	MDP<10% for 100ks observation of source with flux 2x10 ¹¹ erg/s/cm ² (1 mCrab) in the 2-8 keV band	NGC1068, GC,
purious polarization	<0.5%	GRS1915, Cyg X-1
Angular resolution	<30 arcsec	Crab, jet in CenA, SNR, GC
Field of View	>10 arcmin	PWNe, SNRs,
Spectral resolution	<20% at 5.9 keV	Black hole spin
Timing resolution	8 µs	Accreting millisecond pulsar
Timing	10 µ s	Accreting millisecond pulsar
ynehronization with the Universal Time		
Dead time for one telescope	<100 µ s	Crab Nebula, Cyg X-1,
Mission duration	3 уг	Core program and population studies
TOO	Repointing <12 hr during working hours	Bursters
Sky accessibility	1/3 of the sky accessible at any time	Observation of galactic and extragalactic sources
orbidden directions	None over one year	Core program and population studies

XIPE Science Requirements

Payload and mission requirements

	Payload requirements			
Total collecting area	>1100 cm ² at 3 keV	See Req-Sci-010		
Modulation factor	>30% at 3 keV	See Req-Sci-010		
Detector efficiency	>10% at 3 keV	See Req-Sci-010		
	High Level			
	Mission Requiren	ients		
Orbit	LEO, altitude<600 km, inclination<6°	Background for GC		
Absolute Pointing Error (APE)	≤1 arcmin	SNR, PWNe,		
Absolute Pointing Drift (APD)	≤1 arcmin	SNR, PWNe,		
Relative Pointing Error (RPE)	≤1 aremin	SNR, PWNe,		
Absolute Measurement Accuracy (AMA)	≤10 arcsec/5 Hz	SNR, PWNe,		
Observation length	5 ks – 2 Ms	Crab – GC		
Number of pointings	1.50/year	Population studies		
Telescope optical axis mutual alignment	<3 arcmin	SNR, PWNe,		
Telescope optical axis alignment to the	<2 arcmin	SNR, PWNe,		

Xipe 💉

XIPE Observing Plan

How many sources?

Target Class	Ttot (days)	Tobs/ source (Ms)	MDP (%)	Number in 3 years	Number available
AGN	219	0.3	< 5	73	127
XRBs (low+high mass)	91	0.1	< 3	91	160
SNRe	80	1.0	< 15 % (10 regions)	8	8
PWN	30	0.5	<10 % (more than 5 regions)	6	6
Magnetars	50	0.5	< 10 % (in more than 5 bins)	10	10
Molecular clouds	30	1-2	< 10 %	2 complexes or 5 clouds	2 complexes or 5 clouds
Total	500			193	316

XIPE Observing Plan

First six months observing plan

Object	Class	F _{2.8 keV} (10 ⁻¹¹ cgs)	T _{exp} (ks)	MDP (%) or ΔΡ/Δφ	Expected Polarization	Science goal
Crab Nebula	PWN	1950	20	$\Delta P \le 1\%$ and $\Delta \phi \le 1 \deg$	>19% (Weisskopf et al. 1978, Volpi et al. 2008)	Map of the Nebula
Vela PWN	PWN	6.0	100	MDP=6.0%	>10% (Volpi et al. 2008)	Mean polarization
Cas A	SNR	116	1000	MDP=3-5%	>10% in selected regions (Bykov et al. 2009, Fabiani et al. 2014)	Map of the remnant
Cyg X-1	μQSO	1000	170	MDP=0.5%	<5%@2.6 keV (Weisskopf et al. 1977)	Jet, corona
Mrk 421	Blazar	27	100	MDP=3%	>10-20% (Poutanen 1994, Celotti & Matt 1994)	Jet
Cen A (jet)	Radiogalaxy	4	200	MDP=5%	>10-20% (Poutanen 1994, Celotti & Matt 1994)	Jet (spatially resolved)
Am Her	MCV	10	1000	MDP=3.0% /10 phase bins	5-10% (Matt 2004)	Accretion column
SAXJ1808	AMP	100	100	MDP=3.0% /10 phase bins	>5-10% (Viironen & Putanen 2004)	Scattering corona
Her X-1	LMXRB/ Pulsator	90	100	MDP=3.0% /10 phase bins	>10% (Meszaros et al. 1988)	Fan vs. Pencil beam
1RXS J1708	Magnetar	4	250	MDP=9.3% /10 phase bins	>50% (Taverna et al. 2014, Van Adelsberg & Lai 2006)	Vacuum polarization
GX 339-4 (outburst)	XRB	500	100	MDP=0.6%	>a few % (Schnittman & Krolik 2010)	Corona
GX 339-4 (quiescence)	XRB	4	1000	MDP=2.2%	Unknown	Corona
NGC 1068	AGN	0.5	1000	MDP=4%	10% (Goosmann & Matt 2011)	Torus geometry
IC4329A	AGN	10	100	MDP=3%	> a few % (Schnittman & Krolik 2010)	Corona
SGR B complex	Molecular cloud	0.3	1000	ΔP<4%, Διρ<3°	>40% (Churazov et al. 2002, Marin et al. submitted)	Past activity of SgrA*
GRS1915+10 5	μQSO	1300	500	ΔP<0.5% and Δφ <1 deg	>5% (Dovciak et al. 2008, Schnittman et al. 2009)	BH spin
MCG-6-30-15	AGN	4	1000	MDP=1.3%	5% (Dovciak et al. 2011)	BH spin

Overview

- Three telescopes with 3.5 m focal length to fit within the Vega fairing: Long heritage: SAX \rightarrow XMM \rightarrow Swift \rightarrow eROSITA \rightarrow XIPE
- Pioneering, yet mature detectors: conventional proportional counter but with a revolutionary readout, already studied by ESA during XEUS/IXO.
- Mild mission requirements: 1 mm alignment, 1 arcmin pointing.

- Fixed solar panel. No deployable structure. No cryogenics. No movable part except for the filter wheels.
- Three years of nominal operation. No consumables.
- Optics designed by the XIPE consortium and procured by ESA; Focal Plane Assembly and Control Electronics procured by the XIPE consortium.

The Gax Pixel Detector

The Gas Pixel Detector (Costa et al. 2001, Bellazzini et al. 2006, 2007) is a polarization-sensitive instrument capable of imaging, timing and spectroscopy

$$\frac{\partial \sigma}{\partial \Omega} = r_0^2 \frac{Z^5}{137^4} \left(\frac{mc^2}{h\nu}\right)^{7/2} \frac{4\sqrt{2}\sin^2(\theta)\cos^2(\varphi)}{(1-\beta\cos(\theta))^4}$$

The direction of the ejected photoelectron is **statistically** related to the polarisation of the absorbed photon.

PLANE Auger electron Photoelectron Pixel ANODE

The Gas Pixel Detector

The Gax Pixel Detector

Image of a real photoelectron track. The use of the gas allows to resolve tracks in the X-ray energy band.

Modulation factor as a function of energy.

(x,y)=(0.0,0.0)mm, 2nd step - 3.7 keV, 2769

Real modulation curve derived from the measurement of the emission direction of the photoelectron.

Residual modulation for unpolarized photons.

Imaging capability

- Good spatial resolution: 90 μm HEW
- Imaging capabilities on- and off-axis measured at the PANTER X-ray testing facility of the MPE with a JET-X telescope (Fabiani et al. 2014)
- Angular resolution for XIPE: <26 arcsec

XIPE in a nutshell

Polarisation sensitivity	1.2% MDP for 2x10 ^{-10 erg/s cm² (10 mCrab) in 300 ks or 6.7% MDP for 2x10-11 erg/s cm² (1 mCrab) in 100 ks}		
Energy range	2-8 keV	8€ 10.0 - BL-Loc *	(%
Angular resolution	< 26 arcsec (goal: 20 arcsec)		ls ()
Field of View	15x15 arcmin ²	Q = 4U 0142+614 (AXP) × = 1.0 ·	~
Spectral resolution	16% @ 5.9 keV		UD II
Timing	Resolution <8 μs		Σ
Dead time 200 µs		Cyg X-2`x GX339-4`x GX339-4`x	
Stability	>3 yr	$0.1 \boxed{10^{-13}} 10^{-12} 10^{-10} 10^{-9} 10^{-9} 10^{-9} 10^{-7}$	
Spurious polarization	<0.5 % (goal: <0.1%)	Flux 2.0 - 8.0 keV (erg cm ⁻² s ⁻¹)	
Background	2x10 ^{-6 c/s or 4 nCrab}		

The MDP is the minimum detectable polarisation at the 99% confidence level.

$$MDP = \frac{4.29}{\mu\sqrt{S}}\frac{1}{\sqrt{T}}$$

μ: modulation factorS: collecting areaT: observing time

XIPE Team

XIPE Science Study Team

Soffitta Paolo (Lead Scientist) (INAF-IAPS, I)

Bellazzini Ronaldo (INFN-Pi, I)

Courvoisier Thierry (University of Geneva, CH)

Goosmann Rene (Obs. Astron. de Strasbourg, F)

Matt Giorgio (Univ. Roma Tre, I)

Reglero Victor (Univ. of Valencia, E)

Santangelo Andrea (IAAT, D)

Tagliaferri Gianpiero (INAF-OA Brera, I)

Vink Jacco (Univ. of Amsterdam, NL)

Zane Silvia (MSSL-UCL, UK)

XIPE Team

XIPE Science Working Groups

WG 1. Acceleration mechanisms (leaders: G. Tagliaferri, J. Vink)

- WG1.1. Pulsar Wind Nebulae (chair: M. Weisskopf)
- WG1.2. Supernova Remnants (chair: A. Bykov)
- WG1.3. Blazars (chair: I. Agudo)
- WG1.4. Microquasars (chair: E. Gallo)
- WG1.5. Gamma-ray Bursts (chair: C. Mundell)
- WG1.6. Tidal Disruption Events (chair: I. Donnarumma)
- WG1.7. Active Stars (chair: N. Grosso)
- WG1.8. Clusters of Galaxies (chair: S. Sazonov)

WG 2. Magnetic Fields in Compact Objects (leaders: A. Santangelo, S. Zane)

- WG2.1. Cataclysmic Variables and Novae (chair: D. De Martino)
- WG2.2. Accreting millisecond pulsars (chair: J. Poutanen)
- WG2.3. Accreting X-ray Pulsars (chair: V. Doroshenko)
- WG2.4. Magnetars (chair: R. Turolla)

WG 3. Scattering in Aspherical Geometries and Accretion Physics (leaders: E. Churazov, R.Goosmann)

- WG3.1 X-ray binaries and QPOs (chair: J. Malzac)
- WG3.2. Active Galactic Nuclei (chair: P.O. Petrucci)
- WG3.3. Molecular Clouds and SgrA* (chair: F. Marin)
- WG3.4. Ultraluminous X-ray sources (chair: H. Feng)

WG 4. Fundamental Physics (leaders: E. Costa, G. Matt)

- WG4.1 QED and X-ray polarimetry (chair: R. Perna)
- WG4.2. Strong Gravity (chair: J. Svoboda)
- WG4.3. Quantum Gravity (chair: P. Kaaret)
- WG4.4. Axion-like particles (chair: M. Roncadelli)

Activity	Date	
Phase 0 kick-off	Jun-2015	
Phase 0 completed (ARIEL, THOR, XIPE)	Oct-Nov 2015	
ITT for Phase A industrial studies	Nov-2015	
Phase A kick-off	Mar-2016	
Preliminary Requirement Review completed	Apr-2017	
Down-selection recommendation for M4 mission	May-2017	
SPC selection of M4 mission	Jun-2017	
Phase B1 kick-off for the selected M4 mission	Jul-2017	
Phase B1 completed	Sep-2018	
SPC adoption of M4 mission	Nov-2018	
Phase B2/C/D kick-off	2019	
Launch	2026	

Table 1: Tentative timeline for M4 activities

In <u>Aztec mythology</u> and religion, Xipe Totec (<u>/'ʃiːpə 'toʊtɛk/;</u> <u>Classical Nahuatl</u>:

Xīpe Totēc ['<u>fiːpe 'toteːk</u>"]) ("Our Lord the Flayed One") was a life-death-rebirth deity, god of agriculture, vegetation, the east, disease, spring, goldsmiths, silversmiths, liberation and the seasons.

Xipe Totec is represented wearing flayed human skin, usually with the flayed skin of the hands falling loose from the wrists.

(from Wikipedia)

Sure the selecting committee will not dare disappointing so nice and kind god.....

Summary

XIPE will open a new observational window, adding the two missing observables in X-rays.

Many X-ray sources are aspherical and/or nonthermal emitters, so radiation must be highly polarised.

XIPE is simple and ready, using pioneering, yet mature, technology.

First XIPE Science Conference Valencia, May 24-26, 2016

