Effects of geometry and mass accretion rate on thermal spectra of ULX sources

Michal Bursa
Motivation

Spectral modeling of ULXs:

- most often a model with disk+pl or disk+th_comp is used
- in place of a disk model we can see DISKBB, DISKPN, KERRBB, BHSPEC, GRAD, etc
- all of the listed disk models are based on thin disk model, which is inaccurate for $L > 0.3 \: L_{\text{Edd}}$
- BUT, such a modelling tends to give incorrect values for BH masses and for accretion rate (luminosity)
- how much wrong?

(Gladstone et al. 2009)
Spectral modeling of ULXs:

- most often a model with disk+pl or disk+th_comp is used
- in place of a disk model we can see DISKBB, DISKPN, KERRBB, BHSPEC, GRAD, etc
- all of the listed disk models are based on thin disk model, which is inaccurate for $L > 0.3L_{\text{Edd}}$
- BUT, such a modelling tends to give incorrect values for BH masses and for accretion rate (luminosity)
- how much wrong?

(Gladstone et al. 2009)
Spectral model based on slim disk model

Numerical simulations

Credit: A. Sadowski

Analytical solutions

Sadowski+2009
Spectral softening: advection & geometry
ULX spectra (a=0.00, i=30°)
ULX spectra (a=0.00, i=60°)
ULX spectra \((a=0.00, i=60^\circ) \)
ULX spectra (a=0.00, i=60°)
ULX spectra (a=0.00, i=60°)
ULX spectra (a=0.00, i=60°)
ULX spectra (a=0.00, i=60°)
Luminosity vs. Temperature

L-T plot in super-Eddington case:

- standard (thin) disks follow $L \sim T^4$ relation
- advection and obscuration effects cause significant deviations from that relation in super-Eddington regime
- the effect is strongly inclination dependent
- observed luminosity can stay around Eddington even if mass accretion rate is $\gg 1$
- that has implications for spectral modeling
Luminosity vs. Temperature

L-T plot in super-eddington case:
- standard (thin) disks follow $L \sim T^4$ relation
- advection and obscuration effects cause significant deviations from that relation in super-Eddington regime
- the effect is strongly inclination dependent
- observed luminosity can stay around eddington even if mass accretion rate is $>>1$
- that has implications for spectral modeling
Luminosity vs. Temperature

L-T plot in super-Eddington case:

- standard (thin) disks follow $L \propto T^4$ relation
- advection and obscuration effects cause significant deviations from that relation in super-Eddington regime
- the effect is strongly inclination dependent
- observed luminosity can stay around Eddington even if mass accretion rate is $>>1$
- that has implications for spectral modeling
Luminosity vs. Temperature

L-T plot in super-Eddington case:

- standard (thin) disks follow \(L \sim T^4 \) relation
- advection and obscuration effects cause significant deviations from that relation in super-Eddington regime
- the effect is strongly inclination dependent
- observed luminosity can stay around eddington even if mass accretion rate is \(\gg 1 \)
- that has implications for spectral modeling
Luminosity vs. Temperature

L-T plot in super-Eddington case:
• standard (thin) disks follow $L \sim T^4$ relation
• advection and obscuration effects cause significant deviations from that relation in super-Eddington regime
• the effect is strongly inclination dependent
• observed luminosity can stay around Eddington even if mass accretion rate is $>>1$
• that has implications for spectral modeling

Poutanen+2007
Mass estimates from thermal spectra

SLIMULX spectra fitted with DISKBB
- simulated SLIMULX spectra are fitted with a thin disk model (DISKBB) and mass is obtained from the fit
- at low Mdot, the fit recovers the original mass, but at high Mdot, mass is much larger
- it appears to be quite tricky to estimate the ULX source parameters using thin disk models if the disk is strongly radiation pressure dominated
- masses may be largely overestimated
Limitations

Model limitations

- vertical equilibrium treatment ($Q \sim R^{-3}$ instead of $Q \sim (R^2 + z^2)^{-3/2}$)
 limits H/R to ~ 1
- constant mass accretion rate, the solution misses transfer of gas to outflow
- reflection of radiation in the inner funnel; beaming
- feedback from radiation on the disk structure and shape
- hardening factor treatment

Fixes

- use insight from numerical simulations to apply scaling to the analytic model, possibly with accounting for comptonization in the outflowing wind
Summary

- slimulx model can be used fit BHB UXL spectra
- the model spectra reproduce a turnover in L-T track
- compared to thin disk models, it gives lower BH masses