NuSTAR spectral analysis of the two bright Seyfert 1 galaxies: MCG 8-11-11 and NGC 6814

Alessia Tortosa Università Roma Tre

From the Dolomites to the event horizon: sledging down the black hole potential well.

SEXTEN - 10/07/2017
Overview

MCG +8-11-11

\[z = 0.0204 \]
\[\log \left(\frac{M_{BH}}{M_\odot} \right) = 8.07 \pm 0.02 \]
\[F_{2-10\text{keV}} = 5.62 \times 10^{-11} \text{ergcm}^{-2}\text{s}^{-1} \]
\[F_{20-100\text{keV}} = 8.46 \times 10^{-11} \text{ergcm}^{-2}\text{s}^{-1} \]

Suzaku + Swift BAT (Bianchi et al., 2010; Mantovani et al., 2016): relativistic FeKα line + narrow component with no associated reflection component + Fe XXVI line emission;

ASCA and OSSE (Grandi 1998): absorbed power law, \(\Gamma=1.73 \) & \(E_c\sim250 \text{ keV} \) + reflection component + cold iron line;

BeppoSAX (Perola 2000): \(\Gamma=1.84 \pm 0.05 \) & \(E_c=169^{+318}_{-78} \) keV;

XMM-Newton (Matt et al., 2006): lack of a soft excess + a large reflection component + narrow iron line + Fe XXVI line emission.

NGC 6814

\[z = 0.0052 \]
\[\log \left(\frac{M_{BH}}{M_\odot} \right) = 6.99^{+0.32}_{-0.25} \]
\[F_{2-10\text{keV}} = 0.17 \times 10^{-11} \text{ergcm}^{-2}\text{s}^{-1} \]
\[F_{20-100\text{keV}} = 5.66 \times 10^{-11} \text{ergcm}^{-2}\text{s}^{-1} \]

INTEGRAL (Malizia et al., 2014): quite flat spectrum \(\Gamma=1.68 \) & \(E_c\sim190 \text{ keV} \);

XMM-Newton (Ricci et al., 2014): FeKα line with EW\~{}84 eV;

Suzaku (Walton et al., 2013): no soft excess, fairly hard photon index \(\Gamma=1.53 \), variability.
• Why? To investigate the Comptonization mechanisms acting in the innermost regions of AGN and which are believed to be responsible for the X-ray emission;
• NuSTAR (Nuclear Spectroscopic Telescopic Array) works in the band 3 - 79 keV;
• First focusing hard X-ray (10-79 keV) telescope in orbit;
• ~100 times more sensitive in the 10-79 keV band than any previous mission working in this band;
AGN in X-Rays

X-RAYS EMISSION:

In AGN the primary X-ray emission is due to Inverse Compton by electrons in a hot corona of the UV/soft X-ray disc photons.

PRIMARY POWER-LAW:

- Power-law with photon index and cutoff energy directly related to the temperature and to the optical depth of the coronal plasma.
- Most popular Comptonization models imply: $E_c = 2-3 \times kT_e$

REPROCESSED EMISSION:

Typical X-ray features of the reflection by cold circumnuclear material include intense Fe Kα line ≈ 6.4 keV and the associated Compton reflection continuum peaking ≈ 30 keV.
Both sources show variability in their light curves but since no significant spectral variation is found in the ratio between the 10-80 and 3-10 keV count rates we used **time-averaged spectra** in our analysis.
• Primary X-ray emission;
• Relativistic disk reflection;
• Cold, distant reflection;
• Narrow Fe XXVI line
• @ 6.966 keV (MCG +8-11-11)
Spectral Parameters

MCG +8-11-11

\[\Gamma = 1.77 \pm 0.04 \]
\[E_c = 175^{+110}_{-50} \text{ keV} \]
\[R^{\text{refl}} = 0.25 \pm 0.12 \]

NGC 6814

\[\Gamma = 1.71^{+0.04}_{-0.03} \]
\[E_c = 155^{+70}_{-35} \text{ keV} \]
\[R^{\text{refl}} = 0.27^{+0.10}_{-0.12} \]
Spectral Parameters

MCG +8-11-11

\[\Gamma = 1.77 \pm 0.04 \]
\[E_c = 175^{+110}_{-50} \text{ keV} \]
\[R^{\text{refl}} = 0.25 \pm 0.12 \]

NGC 6814

\[\Gamma = 1.71^{+0.04}_{-0.03} \]
\[E_c = 155^{+70}_{-35} \text{ keV} \]
\[R^{\text{refl}} = 0.27^{+0.10}_{-0.12} \]

* Relativistic FeKα line with the associated reflection component, moderately broad;
* Cutoff energy measurement;
* Narrow component of the FeKα line due to a large iron overabundance, or alternatively produced in distant Compton thin material;
Spectral Parameters

MCG +8-11-11

NGC 6814

E_{c} (keV) vs. Γ for MCG +8-11-11 and NGC 6814, showing contours at 68%, 90%, and 99% confidence levels.
The coronal temperature is expected to be related to the cutoff energy by $E_c = 2-3 \times kT_e$ (Petrucci 2000, 2001).

CompTT (Titarchuk et al., 1994) convolved with the **REFLECT** model in XSPEC (reflection from neutral material according to the method of Magdziarz & Zdziarski, 1995)

MCG +8-11-11

- $kT = 170^{+150}_{-70} \text{ keV}$
- $\tau = 0.17 \pm 0.1$

NGC 6814

- $kT = 165^{+100}_{-50} \text{ keV}$
- $\tau = 0.2^{+0.30}_{-0.15}$

SLAB

SPHERE

- $kT = 150^{+80}_{-70} \text{ keV}$
- $\tau = 0.7^{+0.7}_{-0.3}$

- $kT = 110^{+100}_{-70} \text{ keV}$
- $\tau = 1.1^{+0.3}_{-0.8}$
\(\Theta \) electron temperature normalized to the electron rest energy

\[\Theta_e = \frac{kT_e}{m_e c^2} \]

\(\ell \) the dimensionless compactness parameter

\[\ell = \frac{L}{R} \frac{\sigma_T}{m_e c^3} \]

Summary of the theoretical understanding of the \(\Theta-\ell \) plane.

\(\Theta-\ell \) distribution for \textit{NuSTAR} observed AGN (blue points) and BHB (red points)
\(\Theta \) electron temperature normalized to the electron rest energy

\[
\Theta_e = \frac{kT_e}{m_e c^2}
\]

\(\ell \) the dimensionless compactness parameter

\[
\ell = \frac{L \sigma_T}{R m_e c^3}
\]

Summary of the theoretical understanding of the plane.

Extrapolated 0.1-200 keV Luminosity of the power-law component
\[\Theta_e = \frac{kT_e}{m_e c^2} \]

\[\ell = \frac{L}{R} \frac{\sigma_T}{m_e c^3} \]

Summary of the theoretical understanding of the \(\Theta-\ell \) plane.

Radius of the spherical corona. We assume \(R = 10R_g \)
Summary of the theoretical understanding of the Θ-ℓ plane.

- **MCG +8-11-11**
 \[
 \Theta_e = 0.28^{+0.28}_{-0.11}, \quad \ell = 27 \pm 12(R_{10})^{-1}
 \]

- **NGC 6814**
 \[
 \Theta_e = 0.22^{+0.15}_{-0.12}, \quad \ell = 14.5 \pm 4.5(R_{10})^{-1}
 \]

Θ-ℓ distribution for *NuSTAR* observed AGN (blue points) and BHB (red points).
Looking for correlations

Unobscured nearby Seyfert Galaxies observed by *NuSTAR*

Source	Γ	E_c [keV]	log(M_{bh}/M_\odot)	L_{bol}/L_{Edd}	$L_{2-10keV} \times 10^{44}$ ergs s$^{-1}$	Ref.
NGC 5506	1.91 ± 0.03	720$^{+130}_{-190}$	8.0 ± 0.2	6.21 × 10$^{-3}$	0.0526	1 - 2
MCG 5-23-16	1.85 ± 0.01	166$^{+66}_{-5}$	7.2 ± 0.2	3.73 × 10$^{-2}$	0.166	3 - 4
SWIFT J2127.4+5654	2.08 ± 0.01	108$^{+11}_{-10}$	7.2 ± 0.2	1.02 × 10$^{-1}$	0.133	5 - 6
IC4392A	1.73 ± 0.01	184 ± 14	8.2 ± 0.1	9.8 × 10$^{-2}$	0.626	7 - 8
3C390.3	1.70 ± 0.01	116$^{+24}_{-25}$	9.04 ± 0.4	5.17 × 10$^{-2}$	1.8	9 - 10
3C 382	1.68$^{+0.03}_{-0.02}$	214$^{+14}_{-7}$	7.7 ± 0.5	5.06 × 10$^{-2}$	2.3	11 - 12
GRS 1734-292	1.65 ± 0.05	53$^{+11}_{-8}$	8.5 ± 0.1	3.3 × 10$^{-2}$	0.056	13
NGC 6814	1.71$^{+0.04}_{-0.03}$	135$^{+70}_{-35}$	7.2 ± 0.05	1.22 × 10$^{-2}$	0.0204	9 - 14
MCG +8-11-11	1.77 ± 0.04	175$^{+40}_{-35}$	8.07 ± 0.02	9.59 × 10$^{-2}$	0.513	14 - 15
Ark 564	2.27 ± 0.08	42 ± 3	6.4 ± 0.5	1.1	0.39	16 - 17
PG 1247+267	2.35$^{+0.09}_{-0.08}$	89$^{+134}_{-34}$	8.3$^{+0.17}_{-0.15}$	1.16 × 10$^{-2}$	0.15	18 - 19
NGC 7213	1.84 ± 0.03	> 140	8.0 ± 0.2	1.03 × 10$^{-3}$	0.012	20 - 21
MCG 6-30-15	2.06 ± 0.01	> 110	6.2 ± 0.1	1.20 × 10$^{-1}$	0.02	22 - 23
NGC 2110	1.65 ± 0.03	> 210	8.3 ± 0.2	9.78 × 10$^{-5}$	0.004	24 - 25
Mrk 335	2.14$^{+0.02}_{-0.04}$	> 174	7.1 ± 0.01	2.32 × 10$^{-1}$	0.18	26 - 27
Ark 120	1.73 ± 0.02	> 190	8.2 ± 0.1	1.25 × 10$^{-1}$	0.56	26 - 28
Fairall 9	1.96$^{+0.01}_{-0.02}$	> 242	6.8 ± 0.02	7.57 × 10$^{-2}$	0.77	26 - 29
Mrk766	2.22$^{+0.02}_{-0.03}$	> 441	6.8$^{+0.05}_{-0.06}$	8.34 × 10$^{-2}$	0.046	30 - 31
PG1211+143	2.51 ± 0.02	> 124	8.16$^{+0.11}_{-0.16}$	4.76 × 10$^{-2}$	0.35	26 - 32

Looking for correlations

Photon Index

Eddington ratio
Looking for correlations

Fitting only the sources with cutoff measurements, with a simple linear relation:

Photon Index

\[y = a \cdot x + b \]

- \(a = -97.47 \pm 96.91\)
- \(b = +361.69 \pm 180.19\)
- Spearman corr -0.36
- significance 0.28

Eddington ratio

\[y = a \cdot x + b \]

- \(a = -159.63 \pm 77.29\)
- \(b = 201.11 \pm 62.75\)
- Spearman corr -0.25
- significance 0.45
Looking for correlations

Fitting only the sources with cutoff measurements, with a simple linear relation:

Photon Index

\[
\begin{align*}
 a &= -97.47 \pm 96.91 \\
 b &= +361.69 \pm 180.19 \\
 \text{Spearman corr} &= -0.36 \\
 \text{significance} &= 0.28
\end{align*}
\]

Eddington ratio

\[
\begin{align*}
 a &= -159.63 \pm 77.29 \\
 b &= 201.11 \pm 62.75 \\
 \text{Spearman corr} &= -0.25 \\
 \text{significance} &= 0.45
\end{align*}
\]
Conclusion

- Cutoff measurements;
- Relativistic broadened FeKα line with disk reflection component;
- Narrow FeKα line due to a large iron overabundance, or alternatively produced in distant Compton thin material;
- Estimated Eddington ratio $\eta=0.01$ for MCG +8-11-11 and $\eta=0.09$ for NGC 6814;
- Both sources are located against the pair runaway line like most of the sources among those analyzed by Fabian et al.;
- The observation of the two sources could help to understand the physics of the corona-accretion disk system and its geometry, enriching our sample;
- Next step: fitting with the cutoff lower limits.
THANK YOU!