Studying microquasars with X-ray polarimetry

Andrea Marinucci

Congresso Nazionale Oggetti Compatti X

Padova – 14 September 2017
Outline

- Introduction

- Polarimetry and microquasars:
 • Coronal geometry
 • The role of the jet
 • The BH spin

- Future instruments
In the early days of X-ray astronomy, polarimeters were flown aboard rockets and aboard the OSO-8 and ARIEL-5 satellites.

With the advent of X-ray optics, polarimetry based on the classical techniques (Bragg diffraction and Thomson scattering) was left behind, with respect to imaging and spectroscopy.

In the last 15 years, with the development of sensors based on the photoelectric effect (Costa+01), polarimetry has been again considered as a realistic option, either for large telescopes with swappable instrumentation or for dedicated small missions.
The only positive detection was the polarization of the Crab Nebula (Weisskopf+78) plus many other upper limits of modest significance (Sco X-1: Weisskopf+78; Hughes+84).
How can we use X-ray polarimetry to study such astrophysical systems?

Fender & Belloni +12

Done +07

Andrea Marinucci (Roma Tre)
Introduction - microquasars

- The role of the jet
- The coronal geometry
- The BH spin
The coronal geometry (hard state)

MoCA: Montecarlo Code for Accretion
Assumptions and advantages:
1. Shakura-Sunyaev neutral accretion disk
2. Extended coronae
3. Single photon approach
4. Full special and general relativity effects included
5. Polarization signal (!)

\[T(R) = \sqrt[\frac{3GMm}{8\pi R^3\sigma_s B}} \left(1 - \frac{R_m}{R}\right) \]

\[\kappa T_e \]

\[d\tau = n_e \sigma_{kn} dx \]
The coronal geometry (hard state)

Stokes parameters:

- I is proportional to the intensity of the polarized component
- Q is related to the angle of polarization
If the emission is due to Comptonization of the disc thermal photons in a hot corona, polarimetry can constrain the geometry of the corona.
The role of the jet (hard state)

Coronal emission is predicted to be less than 10%

Much larger polarization degrees are expected for jet emission, independently of the details of the jet structure.
The BH spin (soft state)

In accreting Galactic black hole systems, X-ray polarimetry can provide a technique to measure the spin of the black hole, in addition to the three methods employed so far

GRO J1655-40:

QPO: \(a = J/J_{\text{max}} = 0.290 \pm 0.003 \)

Continuum: \(a = J/J_{\text{max}} = 0.7 \pm 0.1 \)

Iron line: \(a = J/J_{\text{max}} > 0.95 \)
The BH spin (soft state)

Gravitational bending modifies the light geodesics causing a rotation of the plane of polarization: the polarization angle rotates with respect to the Newtonian value.

The effect increases with decreasing radii, i.e. with increasing temperature, i.e. with increasing photon energy.

rotation of the polarization angle with energy

Connors+80
Harder photons come from the inner region of the accretion disk and then are more affected;

The effect is stronger for a Kerr BH, because the disk gets closer to the BH

Courtesy: Michal Dovciak
The BH spin (soft state)

200 ks IXPE observation of GRS1915+105

Harder photons come from the inner region of the accretion disk and then are more affected;

The effect is stronger for a Kerr BH, because the disk gets closer to the BH

(adapted from Dovciak+09)
Future instruments

The photoelectric polarimeter

Real modulation curve derived from the measurement of the emission direction of the photoelectron.

Residual modulation for unpolarized photons.

Andrea Marinucci (Roma Tre)
Future instruments - IXPE

IXPE
(Imaging X-ray Polarimetry Explorer)

Selected by NASA (SMEX) for a launch in early 2021

P.I.: Martin Weisskopf (MSFC)

It will re-open the X-ray polarimetry window!

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarisation sensitivity</td>
<td>1.8 % MDP for 2×10^{-10} erg/s cm2 (10 mCrab) in 300 ks (CBE)</td>
</tr>
<tr>
<td>Spurious polarization</td>
<td><0.3 %</td>
</tr>
<tr>
<td>Number of Telescopes</td>
<td>3</td>
</tr>
<tr>
<td>Angular resolution</td>
<td>28'' (CBE)</td>
</tr>
<tr>
<td>Field of View</td>
<td>12.9×12.9 arcmin2</td>
</tr>
<tr>
<td>Focal Length</td>
<td>4 meters</td>
</tr>
<tr>
<td>Total Shell length</td>
<td>600 mm</td>
</tr>
<tr>
<td>Range Shell Diameter</td>
<td>24 shells, 272-162 mm</td>
</tr>
<tr>
<td>Range of thickness</td>
<td>0.16-0.26 mm</td>
</tr>
<tr>
<td>Effective area at 3 keV</td>
<td>854 cm2 (three telescopes)</td>
</tr>
<tr>
<td>Spectral resolution</td>
<td>16% @ 5.9 keV (point source)</td>
</tr>
<tr>
<td>Timing</td>
<td>Resolution <8 μs</td>
</tr>
<tr>
<td>Operational phase</td>
<td>2 yr</td>
</tr>
<tr>
<td>Energy range</td>
<td>2-8 keV</td>
</tr>
<tr>
<td>Background (req)</td>
<td>5×10^{-3} c/s/cm2/keV/det</td>
</tr>
<tr>
<td>Sky coverage, Orbit</td>
<td>50 %, 540 (0°)</td>
</tr>
</tbody>
</table>

See talk by F. Muleri

Andrea Marinucci (Roma Tre)

Simultaneous spectroscopic, timing and polarimetric observations

Focal plane imaging polarimeter: 4 optics with 5.25m FL
Imaging, PSF 20 arcsec HPD
Gas Pixel Detector: single photon, <100µs
Energy band: 2-10 keV
Energy resolution: 20% FWHM @6 keV
Total effective area: 900 cm² @2 keV (includes QE)

See talk by Y. Evangelista
Thank you for the attention!
Backup slides

![Graph showing average scattering per photon with different ζ values.](image)

Andrea Marinucci (Roma Tre)