Multi-wavelength campaign on NGC 7469: the broad-band X-ray spectrum

Riccardo Middei on behalf of the NGC 7469 consortium
The campaign on NGC 7469

- properties of the outflow
- understand the nature of the continuum emission

7 observations

<table>
<thead>
<tr>
<th>Obs. Satellites</th>
<th>Obs. ID</th>
<th>Star time</th>
<th>Net Exp. (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMM-Newton</td>
<td>0760350201</td>
<td>2015-06-12</td>
<td>6.3e+04</td>
</tr>
<tr>
<td>Nustar</td>
<td>0760350301</td>
<td>2015-06-12</td>
<td>2.1e+04</td>
</tr>
<tr>
<td></td>
<td>60101001004</td>
<td>2015-11-24</td>
<td>5.9e+04</td>
</tr>
<tr>
<td></td>
<td>60101001006</td>
<td>2015-11-24</td>
<td>2.0e+04</td>
</tr>
<tr>
<td></td>
<td>0760350401</td>
<td>2015-12-15</td>
<td>5.9e+04</td>
</tr>
<tr>
<td></td>
<td>60101001008</td>
<td>2015-12-15</td>
<td>2.2e+04</td>
</tr>
<tr>
<td></td>
<td>0760350501</td>
<td>2015-12-33</td>
<td>6.2e+04</td>
</tr>
<tr>
<td></td>
<td>60101001008</td>
<td>2015-12-22</td>
<td>2.3e+04</td>
</tr>
<tr>
<td></td>
<td>0760350601</td>
<td>2015-12-24</td>
<td>6.5e+04</td>
</tr>
<tr>
<td></td>
<td>60101001010</td>
<td>2015-12-25</td>
<td>2.1e+04</td>
</tr>
<tr>
<td></td>
<td>0760350701</td>
<td>2015-12-26</td>
<td>6.7e+04</td>
</tr>
<tr>
<td></td>
<td>60101001012</td>
<td>2015-12-27</td>
<td>2.1e+04</td>
</tr>
<tr>
<td></td>
<td>0760350801</td>
<td>2015-12-28</td>
<td>7.0e+04</td>
</tr>
<tr>
<td></td>
<td>60101001014</td>
<td>2015-12-28</td>
<td>2.3e+04</td>
</tr>
</tbody>
</table>

NGC 7469

- Seyfert 1 galaxy
- $z=0.016268$
- $M_{bh}=7M_{\text{sun}}$
- variable source
- bright in the X-rays
First results from the campaign:

> Kinematics of the outflow
> Elemental abundances
> Ionization and column density
> Emission features
> Location of the outflow

‘Multi-wavelength campaign on NGC 7469 I. The rich 640 ks RGS spectrum.’

Behar et al. 2016
Timing analysis

NGC 7469 is a variable source

Middei et al. in prep.
NGC 7469 is a variable source

Middei et al. in prep.
The XMM-Newton spectra

At least one more component is needed to fit the soft band.

This soft excess extends up to 4 keV.
The XMM-Newton spectra

First step: We study XMM-Newton spectra in the 4-10 keV band.
The XMM-Newton best-fit

Reduced_Chi= 1.04

mo=(pexrav+zgauss+zgauss)

Neutral FeK\alpha

FeXXVI Ly\alpha
The XMM-Newton best-fit

\[\text{Reduced Chi} = 1.04 \]

The neutral iron line

- Constant
- Narrow (no relativistic broadening)

\[\text{EQW} \approx 90 \text{ eV} \]
NuSTAR spectral analysis:

- Using information obtained from previous XMM-Newton analysis
 - no relativistic effects
 - consistent reflection model: hump + narrow iron line at 6.40 keV
 - narrow iron line at 6.966 keV
 - high energy cut-off

Reduced Chi = 2.06
NuSTAR spectral analysis:

\[mo = \text{const} \times (\text{xillver} + \text{zgauss}) \]

Reduced_{\text{Chi}} = 1.05

Information on
> high energy cut-off
> reflection component
NuSTAR spectral analysis
some results

> High energy cut-off ~ 180 keV
> Reflection ~ 0.40
> Gamma ~ 1.78
NuSTAR spectral analysis
some results

> High energy cut-off ~ 180 keV
> Reflection ~ 0.40
> Gamma ~ 1.78
XMM-Newton & Nustar 4-78 keV analysis

Inter-calibration:
A difference (~0.17) between the XMM-Newton and NuSTAR gamma is found

\[\text{Reduced}_\text{Chi}= 1.05 \]

\[\text{mo}=\text{const}*(\text{xillver}+\text{zgauss}) \]
XMM-Newton & Nustar 0.3-78 keV analysis

4-78 keV band already constrained
XMM-Newton & Nustar 0.3-78 keV analysis

4-78 keV band already constrained

0.3-78 keV band Work in progress ...
NGC 7469 varies much on short time-scales while hardness ratios do not vary a lot.

No evidence of relativistic effects on the iron line which is constant along with its associated reflection component.

Cut-off at \(~180\) keV, constant among the observations.

No evidence of variability of Gamma among the observations.
Thanks for your attention

....waiting for the whole spectral analysis