The X-ray emission of radio-quiet AGN in the NuSTAR era

Giorgio Matt

(Universita’ Roma Tre, Italy)

On behalf of the NuSTAR AGN Physics WG
NuSTAR is the **first** focusing hard X-ray satellite

Coded Aperture Optics: high background, large detector

Grazing Incidence Optics: low background, compact detector
NuSTAR two-telescope total collecting area

Sensitivity comparison

INTEGRAL ~0.5 mCrab (ISGRI)
(20-100 keV) with >Ms

Swift (BAT) ~0.8 mCrab
(15-150 keV) with >Ms

NuSTAR ~0.8 μCrab
(10-40 keV) In 1 Ms
1 Ms Sensitivity
3.2 x 10^{-15} erg/cm^2/s
(6 – 10 keV)
1.4 x 10^{-14} (10 – 30 keV)

Timing
relative 100 microsec
absolute 3 msec

Spectral response
energy range 3-79 keV
threshold 2.0 keV
\Delta E @ 6 keV 0.4 keV FWHM
\Delta E @ 60 keV 1.0 keV FWHM

Imaging
HPD 58”
FWHM 18”
Localization 2” (1-\sigma)

Field of View
FWZI 12.5’ x 12.5’
FWHI 10’ @ 10 keV
 8’ @ 40 keV
 6’ @ 68 keV

Target of Opportunity
response <24 hr
 typical 6-8 hours
 80% sky accessibility
Launch June 13, 2012
Reagan Test Site, Kwajalein Atoll
NuSTAR Launch & Orbit

Pegasus launch from Kwajelein: low earth orbit, 550x600 km, low inclination, 6°
High-Energy Missions in Orbit: comparison of pixel scales

NGC 1365
Imaging

Cas A supernova remnant

INTEGRAL ISGRI
E>15 keV

NuSTAR Image
Red: 4.5 – 5.5 keV
Green: 8 – 10 keV
Blue: 10 – 25 keV

Grefenstette et al. (2014)
Explosion is highly asymmetric as shown by the 44Ti map.

Fe K maps the shocked region (iron in unshocked regions difficult to observe)

Grefenstette et al. (2014)
Imaging

Previous high-energy X-ray view of the heart of the Milky Way

NuSTAR E> 10 keV
X-ray Image of Galactic Center
Imaging

NuSTAR $E > 10$ keV

X-ray Image of Galactic Center

Infrared View of Milky Way
Broad Band Spectroscopy

Vela X-1 accreting pulser -15 ksec with NuSTAR
Broad Band Spectroscopy

ULX: what is the right model?
Broad Band Spectroscopy

NGC 1313 X1 (Bachetti et al. 2013)
Broad Band Spectroscopy

First cyclotron line in a SFXT
IGR J17544-2619 (Valerao et al. 2015)
Timing

Discovery of a pulsing ULX M82 X-2 (Bachetti et al. 2014).
More discovered afterwards
Baseline Science Mission

• As typical for an Explorer mission, all baseline observations led by the science team during the nominal lifetime (~2 yrs)

• ~150-person international science team broken into 13 science working groups

• After the current initial calibration period has been completed, observations became public through HEASARC two months after a data set is completed

• 1.5 Ms of NuSTAR made available for coordinated observations with XMM from AO13 (with a factor ~6 oversubscription). Similar agreement with Chandra and INTEGRAL

• Mission extended to 2015-18. Observations now open to the worldwide community.
<table>
<thead>
<tr>
<th>Science Group</th>
<th>Working Group Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galactic Survey</td>
<td>Chuck Hailey</td>
</tr>
<tr>
<td>Supernovae and ToOs</td>
<td>Steve Boggs</td>
</tr>
<tr>
<td>Supernova Remnants and PWN</td>
<td>Fiona Harrison</td>
</tr>
<tr>
<td>Magnetars and RPP</td>
<td>Vicky Kaspi</td>
</tr>
<tr>
<td>Galactic Binaries</td>
<td>John Tomsick</td>
</tr>
<tr>
<td>Ultraluminous X-ray Sources</td>
<td>Fiona Harrison</td>
</tr>
<tr>
<td>Extragalactic Surveys</td>
<td>Daniel Stern</td>
</tr>
<tr>
<td>Blazars</td>
<td>Greg Madejski/Paolo Giommi</td>
</tr>
<tr>
<td>Obscured AGN</td>
<td>Daniel Stern</td>
</tr>
<tr>
<td>AGN Physics</td>
<td>Giorgio Matt</td>
</tr>
<tr>
<td>Galaxy Clusters</td>
<td>Allan Hornstrup/Silvano Molendi</td>
</tr>
<tr>
<td>Starburst Galaxies</td>
<td>Ann Hornschemeier</td>
</tr>
<tr>
<td>Solar Physics</td>
<td>David Smith</td>
</tr>
</tbody>
</table>
AGN Physics: Scientific rationale

- Determine the physical parameters of the hot corona (temperature, optical depth)

- Measure the spin of the Black Hole

Berti & Volonteri 2008
Measuring the Black Hole spin

\[a = \text{adimensional angular momentum per unit mass (spin)} \quad a \in (0,1) \]

(Fabian et al. 2000)
The relativistic reflection in NGC1365
The relativistic reflection in NGC1365

Observed simultaneously by XMM and NuSTAR. Both absorption and reflection models fit well the XMM data, but only reflection also the NuSTAR data (Risaliti et al. 2013)
The relativistic reflection in NGC1365

Observed simultaneously by XMM and NuSTAR. Consistent results are found in all observations, despite huge differences in the absorption parameters (Walton et al. 2014)
The relativistic reflection in NGC1365

Observed simultaneously by XMM and NuSTAR. Consistent results are found in all observations, despite huge differences in the absorption parameters (Walton et al. 2014)
The broad band provided by NuSTAR + XMM (or Suzaku) allows a good estimate of the continuum spectrum, and so a robust measurement of the BH spin via relativistic effects on the iron line and the reflection component.

Spin \(\sim 1 \) confirmed in MCG-6-30-15 (Marinucci et al. 2014b)

Swift J2127.4+5654 (Marinucci et al. 2014a)
Mrk 335: Relativistic effects within 2 Rg from the event horizon?

The source was found in a very low flux state (Parker et al. 2014).
Mrk 335: Relativistic effects within 2 Rg from the event horizon?

The spectrum is well fitted by an almost pure relativistic reflection component. Applying a lamp-post geometry, a very small height is found, as well as a high BH spin (Parker et al. 2014)
The hard X-ray time lag in MCG-5-23-16

Soft time lags observed in many AGN (e.g. Fabian et al. 2009, De Marco et al. 2013, Uttley et al. 2014) --- Reflection from inner disc

More recently, reverberation of iron lines have also been observed (e.g. Zoghbi et al. 2012, Kara et al. 2014)

Compton hump reverberation expected!!

XMM (Zoghbi et al. 2013) NuSTAR (Zoghbi et al. 2014)
The hard X-ray time lag in Swift J2127.4+5654

Similar results found in Swift J2127.4+5654

Kara et al. 2015
Coronal parameters

Primary hard X-ray emission likely due to Comptonization in a hot corona \rightarrow quasi-exponential high energy cutoffs expected

Evidence for high energy cutoffs in BeppoSAX and XMM - INTEGRAL samples

NuSTAR is providing for the first time source-dominated obs above 10 keV \rightarrow coronal parameters
Coronal parameters

Primary hard X-ray emission due to Comptonization in a hot corona → high energy cutoffs expected

Evidence for high energy cutoffs in BeppoSAX and XMM - INTEGRAL samples

NuSTAR is providing for the first time source-dominated obs above 10 keV → coronal parameters

(Perola et al. 2002) (Malizia et al. 2014)
Coronal parameters

Primary hard X-ray emission due to Comptonization in a hot corona → high energy cutoffs expected

Evidence for high energy cutoffs in BeppoSAX and XMM - INTEGRAL samples

NuSTAR is providing for the first time source-dominated obs above 10 keV → coronal parameters

Swift J2127.4+5654 (Marinucci et al. 2014)

\[kT \sim 68/53 \text{ keV} \quad \tau \sim 0.35/1.35 \]

(slab/sphere)

IC4329A (Brenneman et al. 2014)

\[kT \sim 61/50 \text{ keV} \quad \tau \sim 0.7/2.35 \]

(slab/sphere)

Ark 120 (Matt et al. 2014)
Coronal parameters

The best case so far: MCG-5-23-16 (Balokovic et al., 2015)
Coronal parameters

What E_c values can be measured with NuSTAR? NGC 5506 (Matt et al., 2015)
Coronal parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Γ</th>
<th>E_c (keV)</th>
<th>log(M) (M_{\odot})</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C 382</td>
<td>$1.68^{+0.03}_{-0.02}$</td>
<td>214^{+147}_{-63}</td>
<td>9.2 ± 0.5</td>
<td>1-2</td>
</tr>
<tr>
<td>3C 390.3</td>
<td>1.70 ± 0.01</td>
<td>116^{+24}_{-8}</td>
<td>8.4 ± 0.1</td>
<td>2-12</td>
</tr>
<tr>
<td>Ark 120</td>
<td>1.73 ± 0.02</td>
<td>>190</td>
<td>8.2 ± 0.1</td>
<td>3-12</td>
</tr>
<tr>
<td>IC 4329A</td>
<td>1.73 ± 0.01</td>
<td>186 ± 14</td>
<td>6.8 ± 0.2</td>
<td>4-13</td>
</tr>
<tr>
<td>Fairall 9</td>
<td>$1.96^{+0.01}_{-0.02}$</td>
<td>>242</td>
<td>8.4 ± 0.1</td>
<td>2-12</td>
</tr>
<tr>
<td>MCG 5-23-16</td>
<td>1.85 ± 0.01</td>
<td>116^{+6}_{-5}</td>
<td>7.8 ± 0.2</td>
<td>5-13</td>
</tr>
<tr>
<td>MCG 6-30-15</td>
<td>2.061 ± 0.005</td>
<td>>110</td>
<td>6.2 ± 0.1</td>
<td>6-13</td>
</tr>
<tr>
<td>Mrk 335</td>
<td>$2.14^{+0.02}_{-0.04}$</td>
<td>>174</td>
<td>7.1 ± 0.1</td>
<td>7-12</td>
</tr>
<tr>
<td>NGC2110</td>
<td>1.65 ± 0.03</td>
<td>>210</td>
<td>8.3 ± 0.2</td>
<td>8-14</td>
</tr>
<tr>
<td>NGC5506</td>
<td>1.91 ± 0.03</td>
<td>720^{+130}_{-190}</td>
<td>8.0 ± 0.2</td>
<td>9-2</td>
</tr>
<tr>
<td>NGC7213</td>
<td>1.84 ± 0.03</td>
<td>>140</td>
<td>8.0 ± 0.2</td>
<td>10-2</td>
</tr>
<tr>
<td>SWIFT J2127.4+5654</td>
<td>2.08 ± 0.01</td>
<td>108^{+11}_{-10}</td>
<td>7.2 ± 0.2</td>
<td>11-2</td>
</tr>
</tbody>
</table>
We have started to measure the physical parameters of the corona, but its geometry is largely unknown.

The geometry of the corona is related to its nature and origin (disk perturbation, base of a jet, ...).

The geometry may be probed by **X-ray Polarimetry**.

No polarimeters on board of X-ray satellites since the 70s, when the only measurement so far was obtained (the Crab Nebula).

The **Imaging X-ray Polarimetry Explorer (IXPE)** has been recently selected by NASA for a launch in 2020. A X-ray Polarimetry mission (XIPE) is still competing in the ESA M4 program.

IXPE will be able to obtain meaningful measurements for the brightest specimens of almost all classes of X-ray sources, including AGN.
Black hole feedback in PDS 456

Most luminous RQ AGN in the local Universe

Systematic detection of a deep trough above 7 keV rest-frame: evidence for a large column of highly ionised matter outflowing at about one third of the speed of light

Ideal target for studying BH winds in the Eddington-limited regime

2013/14 campaign: 5 simultaneous XMM + NuSTAR observations
Black hole feedback in PDS 456

XMM only

![Graph showing flux vs. rest-frame energy (keV)]

- Flux in units of 10^{-12} erg s$^{-1}$ cm$^{-2}$
- Rest-frame energy in keV
- Data sources: XMM-Newton, NuSTAR
- Nardini et al. 2015, Science
Black hole feedback in PDS 456

XMM + NuSTAR

 Flux (10^{-12} \text{ erg s}^{-1} \text{ cm}^{-2})

Rest-frame energy (keV)

XMM–Newton
NuSTAR

Kβ
K edge

Nardini+15, Science
Black hole feedback in PDS 456

The deposition of a few % of the total radiated energy is enough to prompt significant feedback on the host galaxy \((\text{Hopkins & Elvis 10})\). Over a lifetime of \(10^7\) yr the energy released through the accretion disk wind likely exceeds the binding energy of the bulge

\[
E_{\text{wind}} \sim 10^{61}\text{ erg} \sim 3 \times M_{\text{bulge}} \sigma^2
\]
The origin of the narrow iron line

NGC 2110 (Marinucci et al., 2015)
Two components?
BAL: Absorption or X-ray weakness?

Broad Absorption Line QSOs have a low X-ray-to-optical flux ratio. Absorption or intrinsic X-ray weakness?

PG 1004+130 Chandra+NuSTAR
(Luo et al. 2013)

Mrk 231 Chandra+NuSTAR
(Teng et al. 2014)
Bright, “bare” Seyfert 1 galaxy

Fit with NuSTAR data only (power law + reflection + iron line)

No High Energy Cutoff detected

Extrapolation to XMM shows strong excess

(Matt et al. 2014)
XMM: no obvious evidence for rel. Line (differently from a previous Suzaku obs, Nardini et al. 2011)

Soft excess with a simple power law or with a Comptonization model give comparable fits to the XMM spectrum, but very different extrapolation to NuSTAR (cold and ionized reflection included in the fit)
The soft excess of Ark 120

Indeed, the broad-band best fit is with a Comptonization model for the soft excess. A cutoff p.l., compTT, nthcomp or optxagnf provide fits of comparable quality.

Optxagnf (Done et al. 2012) is a disk/corona emission model which assumes a thermal disk emission outside the coronal radius, and soft and hard Comptonization inside.

Extrapolating the best fit X-ray model to the OM UV data, an estimate of the black hole spin is possible.
An excess is seen in the NuSTAR data of Aug 14 with respect to both Dec 12 and Feb 15. Best explanation: a decrease of NH (from $>10^{25}$ to about $7 \times 10^{24} \text{ cm}^{-2}$). One less single cloud on the line of sight?

$\quad \rightarrow$ Clumpy Torus
Summary

- **NuSTAR** is providing AGN spectra of unprecedented quality above 10 keV.

- The very broad band spectra from observations coordinated with XMM or Suzaku allow to disentangle the various spectral components (including relativistically distorted reflection) and shed light to poorly known components like eg the soft excess.