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(as expected from MC simulations made with MoCA)



Few trivial considerations

• geometry of the scattering material

Thomson/Compton scattering

linear polarization

• inclination
• scattering regime (# of scatterings 

allowed in the material)
[optical thickness]
(Spectral shape)

Scattering induced polarization signal
strongly depends on:
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3 scattering regimes for the SLAB
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A qualitative explanation

thin (tau<1)

thick (tau~1-2)

very thick (tau>5)

..but we will observe polarization in energy!



SLAB VS SPHERE
(BHB / corona: tau=1, kT=100 keV)
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SLAB VS SPHERE
(BHB corona: tau=1, kT=100 keV)

polarised seed
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KN VS THOMSON
(BHB SLAB corona: tau=1, kT=100 keV)
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where ⇠ is a random number between 0 and 1, l is calculated from
Eq. 13 and �KN is the total Klein-Nishina cross-section obtained
by integration of Eq 10, explicitly

�KN = �T
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(16)

where y =
✏0

mc2 is the ratio between the energy of the incident
photon in the reference frame of the electron and the rest mass
energy of the electron.

The new coordinates of the photon are then calculated. If the
arrival point falls within Rin, the photon is lost. If the arrival point
is on the disc, the photon is absorbed and considered lost as well
(no reflection from the accretion disc is, at moment, included).
If the arrival point falls outside the corona, the photon escapes
toward the observer with no scattering. The Stokes parameters
Q and U are calculated and saved together with the energy and
direction of the photon. Lastly, if the arrival point falls within the
corona, the scattering happens.

In the latter case, the first quantity to be calculated is the po-
lar scattering angle ⇥sc. ⇥sc is independent of the polarisation
status of the incident photon and it is obtained by Eq. 10 follow-
ing Matt et al. (1996) The probability, P, for a photon to scatter
at an angle, ⇥sc is:
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P can always be associated to a random number ⇠ belonging to
the interval [0, 1], as usual. Eq. 17 cannot be analytically in-
verted so we follow the tabular approach by building a grid of
values for P as a function of µ and then, by extracting a ran-
dom number between 0 and 1 we get the corresponding cosine
of the scattering polar angle. Once ⇥sc is calculated the energy
exchange can be easily derived by the Compton formula as

✏01 =
✏0

1 +
✏0

mc2 (1 � cos⇥sc)
(18)

where ✏0 and ✏01 are, respectively, the energies of the incident and
scattered photon in the reference frame of the electron.

Then we used Eq. 11 to derive the azimuthal scattering angle
as in Matt et al. (1996)

(2⇡P � �sc)
 
✏01
✏0
+
✏0

✏01
� sin2 ⇥sc

!
+ sin2 ⇥sc sin�sc cos�sc = 0

(19)

Also this equation cannot be analytically inverted and we use
the same tabular approach to obtain the azimuthal scattering an-
gle. Once the scattering angles are calculated, by making use of
auxiliary vectors as described in Matt et al. (1996), the direction
of the scattered photon can be calculated in the reference frame
of the electron. The scattering angles, together with the energy

of the scattered photon, allow us to calculate also the degree of
polarisation induced by Compton scattering

⇧ = 2
1 � sin2 ⇥sc cos2�sc

✏01
✏0
+
✏0

✏01
� 2 sin2 ⇥sc cos2�sc

(20)

If the value of a random number is greater than ⇧, the scattered
photon’s polarisation vector, p0

1
, is randomly chosen on a plane

perpendicular to its direction, otherwise the polarization vector
is calculated using Angel (1969):

p01 =
1
|p0

1
|
h⇣

p0 ⇥ k01
⌘
⇥ k01

i
(21)

where k0
1

is the spatial part of the scattered photon’s four-
wavevector in the reference frame of the electron. Eventually,
the four-wavevector and the polarization vector of the photon
are anti-transformed to the reference frame of the disc and the
photon keeps travelling until the next scattering happens or until
it falls into the compact object, onto the disc or until it reaches
the observer at infinity.

For each photon which reaches the observer at infinity the
Stokes parameters Q and U are calculated and registered together
with the direction, energy and number of scatterings suffered by
the photons before escaping.

3. The case of unpolarized input radiation

As an illustration, in this section we show some of the results
which can be obtained with MoCA, assuming an unpolarized disc
thermal emission as the source of seed photons. Both spectra
and polarization of the comptonized radiation will be shown and
discussed. In the next section we will deal with the polarization
of the coronal emission in case of initial polarization of the disc
radiation.

3.1. The spectrum

In Fig. 2 we show the spectrum produced by Comptonization
of soft photons from a slab corona with ⌧ = 1 and kTe = 100
keV. Pink line shows the unscattered component reaching the ob-
server and arising from a disc with inner and outer radius equal
to 6 and 500 rg respectively, surrounding a 10M� black hole ac-
creting at ṁ = 0.1 in Eddington luminosity units. Coloured lines
show the different scattering order components forming the fi-
nal power-law spectrum with a high-energy cut-off (black line)
observed at infinity. We have complete information about every
photon composing the spectrum which can be extremely useful
to understand every aspect of the process. The result is consis-
tent with XSPEC Comptonization models such as compPS as
shown in Fig. 3. The comparison has been made by setting, as
much as possible, the same parameters in the XSPEC compps

model and no fit has been performed. On the left panel of Fig. 3
we show the comparison with the slab geometry while on the
right panel the comparison is made for the spherical geometry.
In both cases we chose ⌧ = 1 and kTe = 100 keV and the re-
sults are consistent with the analytical compps model. For very
thick coronae, however, the results of MoCA simulations are not
so nicely overlapped with XSPEC analytical models but this is
expected. As an example we show in Fig. 4 the comparison be-
tween MoCA and the compps model using a slab corona with
⌧ = 5 and kTe = 50 keV (left panel) and a SPHERICAL corona
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GR EFFECTS
(BHB SLAB corona: tau=1, kT=100 keV)
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CONCLUSIONS

Scattering-induced polarization is not that obvious !

Together with spectroscopical (and time) analysis, however, gives 2 more 
observables which can be used to discriminate between geometries of the 
scattering material (aka the corona in accreting sources)

However knowing the inclination of the system and the polarization of seed 
photons is crucial

For the case of accreting sources, IXPE/XIPE band is rewarding but also 
challenging (expecially for XRBs)



Thanks for the attention


