AGN Hardness-Intensity Diagram by XMM-Newton
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X-ray Binaries (XRB) Active Galactic Nuclei (AGN)



Accretion on Black Holes

e accretion rate determines the nature of the accretion flow




X-ray Binaries: X-ray spectral states
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Can we study spectral states in AGN?

* motivation for the study:

1. Is AGN activity a temporary episode of a full accretion cycle
similar to XRB?

2. Can we apply what we learn from XRB to AGN and vice versa?

3. Is AGN radio-dichotomy (about 10% of AGN are radio-loud, the rest
is quiet) due to dichotomy of black hole spin values (with powerful
jets formed around highly spinning black holes), or is it a temporary
feature related to the accretion state?



Can we study spectral states in AGN?

* time scale of day-long transients in XRB translates to thousands
to million years in AGN



Can we study spectral states in AGN?

* time scale of day-long transients translates to thousands to
million years in AGN, no hope to wait




Can we study spectral states in AGN?

* time scale of day-long transients in XRB translates to thousands
to million years in AGN

* study of a large homogeneous sample

* needs to be done in X-rays (non-thermal component) but also in UV
(AGN thermal component)



AGN spectral states — previous works
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Our project with XMM-Newton data

Main advantages:
» optical/UV and X-ray detectors on single telescope
* simultaneous measurements
* eliminate spectral variability
* non-thermal flux estimated from 2-10 keV instead of 0.1-2.4 keV (by
ROSAT)
e eliminate X-ray absorption
* thermal emission from UV instead of the optical band
e closer to the thermal peak



XMM-Newton catalogues

 3XMM catalogue (Rosen et al., 2016)
e contains 9160 observations (2000-15) with more than 500,000 clear
X-ray detections
 OM-SUSS catalogue (Page et al., 2012)
e contains 7170 observations with more than 4,300,000 different UV
sources
* AGN catalogues:
e Véron-Cetty & Véron (2010)
e SDSS (DR12) — quasars + AGN (Alam+, 2015)
e XMM-COSMOS (Hasinger+ 07, Lusso+ 12)

- 6188 simultaneous UV and X-ray measurements of AGN



Selection procedure of good measurements

e removing sources with extended UV emission (accretion disks have to be point
sources)

* removing X-ray under-exposed sources

* removing sources with too steep (I > 3.5) or too flat (I < 1.5) X-ray slope
(potentially large influence of an X-ray absorber)

* removing sources with their measured UV flux corresponding to A < 1240A in
their rest frame (to be always on the same part towards the thermal peak)

e excluding sources with known nuclear HIl regions

 selecting the best observation for each source

- 1522 unique high-quality simultaneous UV and X-ray
measurements of AGN



Definitions

* thermal disc luminosity:
Lp~ 41TDLZ AF A,2910A

* non-thermal power-law luminosity:
— 2
Lp = 4mDj Fo1-100kev
(where Fy 1 _100key IS an extrapolated X-ray power-law flux)

Lp
Lp+Lp

e spectral hardness: H =



Redshift-hardness
distribution of
the sample

* most sources areatz< 1.5
(because of the A < 1240A
criterion) and at low
spectral hardness (H < 0.4)

 hardness decreases with
redshift but this might be
due to observational bias
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Hardness —
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Hardness —
Luminosity
diagram

(in linear scale of
the hardness)

are these sources
intrinsically soft or
hard?
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Hardness —
Luminosity
diagram

(after attempt to
correct for host-

galaxy)
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Eddington ratio

* AGN span quite large range of masses (10>-101°M,)

* Eddington ratio is better quantity to determine the accretion
state

* however, we do not have reliable mass measurements of such a large
AGN sample

* the most reliable methods (e.g. reverberation) were applied to
about a few tens of nearby AGN

* we used virial mass measurements from the width of optical lines
e see Shen et al. (2011) for the SDSS sample
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Conclusions

* we have studied spectral states of AGN with simultaneous
optical/UV and X-ray measurements with XMM-Newton
* we used all available high-quality observations in the archives

e we found several similarities to XRB spectral states:

* radio-loud sources have larger fraction of X-ray flux, their X-ray
spectra are flatter, and they lack thermal disk emission in UV

* radio loudness decreases with the Eddington ratio

* AGN activity as well as the AGN radio dichotomy can be
explained by the spectral state evolution similar to XRB

(for more details see Svoboda et al., 2017, A&A, 603A, 127S)



Thank you very much
for your attention!!!



