The very first results from the use of the X-ray reverberation model KYNREFREV in XSPEC

The model: “The relativistic reflection model in the lamp-post geometry”

Artistic representation of the effects of Strong Gravity around an accreting black-hole
Reverberation in X-rays

Observational discovery

➢ The analysis of continuous monitoring of the 1H0707-495 during 4 orbits of the XMM-Newton satellite in January 2008.

➢ The discovery of a relativistically smeared Fe L (~1 keV) line led to the discovery of X-ray reverberation in X-rays.

➢ Discovery paper:

“Broad line emission from iron K- and L-shell transitions in the active galaxy 1H0707-495”

Fabian, Zoghbi, Ross, Uttley, Gallo, Brandt, Blustin, Boller, Caballero-Garcia, et al.

(250 citations so far)
X-ray Soft/negative=reverberation lags

Powerlaw leads reflection: Reverberation
X-ray Soft/negative = reverberation lags

Akn564
Kara+13

Low frequency lag featureless so NOT reverberation

High frequency lag shows iron
So is reverberation
Reverberation in X-rays

Overview

➢ X-ray reverberation mapping of the inner parts of the accretion disc → clues to the geometry of the corona.

➢ Reverberation mapping in the lamp-post geometry of the compact corona → ionisation of the disc (Chainakun+16, Dovčiak+17).

➢ Goal: understanding the lags versus frequency/energy → model parameters: height of the corona, inclination of the observer, disc ionization profile and black hole spin.

The sketch of the lamp-post geometry. (Credits: Dovčiak+14)
Reverberation in X-rays

Cackett+14

after Campana+Stella95, Reynolds+99
Reverberation in X-rays

In our work we refer as “transfer function” the relative response of the disc to the illumination:

$$\phi_{\Gamma}(E, t) = \frac{F_{\Gamma}}{F_{p}}$$

where $F_{\Gamma}(E, t)$ is the time dependent observed reflected flux from the disc as a response to a flare that would be observed as $F_{p}\delta(t)$. The Fourier transform of the transfer function is calculated as:

$$\hat{\phi}_{\Gamma}(E, f) = A_{\Gamma}(E, f)e^{i\phi_{\Gamma}(E, f)}$$

with amplitude $A_{\Gamma}(E, f)$ and phase $\phi_{\Gamma}(E, f)$ (which is sometimes referred to as transfer function in other works).
Reverberation in X-rays

One can calculate the lag of the signal, computed from the total phase at energy bin E with respect to the total phase at some reference energy bin:

$$\tau(E, f) = \frac{\Delta \phi_{\text{tot}}(E, f)}{2\pi f}$$

To determine the response function of the disc, we assume that the primary X-ray source isotropically emits a flare of duration equal to $1 \, t_g$. Upon being illuminated, each area element of the disc “responds” to this flare by isotropically and instantaneously emitting a “reflection spectrum” in its rest-frame. We assume
The model: “*The relativistic reflection model in the lamp-post post geometry*” (paper I)

Theoretical developments

- Model based on the properties of the accretion disc in the *strong gravity regime* (Dovčiak, Karas & Yaqoob, 2004) → KYRLINE, KYCONV

- Model adapted for use in XSPEC under the lamp-post geometry (Dovčiak et al., 2014) → X-ray spectral studies

- Model adapted for studies of *reverberation mapping* in the lamp-post geometry of the compact corona illuminating the accretion disc in AGN (Dovčiak et al., 2014b) → X-ray spectral and timing studies

- Model adapted for use in XSPEC for simultaneous *spectral and reverberation mapping studies* of black holes *in the whole mass range* (Dovčiak, Caballero-Garcia+, 2017) → KYNREFREV

- *Analysis of X-ray reverberation data (i.e. X-ray time lags) in a sample of Seyfert galaxies using this model with XSPEC* (Caballero-Garcia, Dovčiak+, 2017)
The model: “The relativistic reflection model in the lamp-post geometry”

The model components

- **Black hole**: Schwarzschild or maximally rotating Kerr, with mass M and dimensionless spin parameter $a = 0 - 1$

- **Accretion disc**: co-rotating, Keplerian, geometrically thin, optically thick, *ionised* disc extending from the ISCO up to $r_{\text{out}} = 1000 \frac{GM}{c^2}$.

- **Corona**: *hot point-like plasma* on the rotation axis at height h and emitting power-law radiation, $F_p \sim E^{-\Gamma} e^{-E/E_c}$, with a sharp low energy cut-off at 0.1 keV and $E_c = 300$ keV.

- **Observer**: located at infinity, inclination angle Θ_o with respect to the symmetry axis of the disc.
The model: "The relativistic reflection model in the lamp-post geometry"

Approximations

- **Light rays**: Fully relativistic ray-tracing code in vacuum for photon paths from the corona to the disc and to the observer & from the disc to the observer.

- **Reflection**: REFLIONX (Ross & Fabian, 2005), tables for constant density slab illuminated by the power-law incident radiation used to compute the re-processing in the ionised accretion disc.

- The ionisation of the disc, $\xi \rightarrow$ amount of the incident primary flux (dependent on the luminosity of the primary source, height of the corona and mass of the black hole) \rightarrow density of the accretion disc (different density radial profiles are used).

- Several limb brightening/darkening prescriptions for directionality of the re-processed emission.
The model: “The relativistic reflection model in the lamp-post geometry”

Light curves (“observed”) reflection

Soft (0.3-0.8 keV versus 1-3 keV) light curves.
The model: “The relativistic reflection model in the lamp-post geometry”

Soft lags vs. frequency

Soft (0.3-0.8 keV versus 1-3 keV) lag frequency “spectra”. Notice the “phase wrapping” (left panel).
The model: "The relativistic reflection model in the lamp-post geometry"

Fits with XSPEC

- We have produced time-lags from 1H0707-495 from 20 ks segments in different energy bands taking the 2-4 keV reference energy band.

- We fitted the 0.3-1 keV time-lags versus frequency global spectrum with the KYNREFREV model. → Novel in XSPEC (and very efficient) method!

- We obtain a very good fit ($\chi^2_u \sim 1$) with a run-time of the order of seconds (i.e. alike normal X-ray energy-spectral fitting).

- The values for the parameters obtained are well-constrained and in agreement with Emmanoulopoulos+14 (with exception of the parameters h and Θ_o – since the ionization of the disc is now included!!).
The model: “The relativistic reflection model in the lamp-post geometry”

Fitting the data (using XSPEC)

The soft lag-frequency fitted global spectrum of 1H0707-495 (0.3-0.8 keV versus 1-3 keV) as obtained using XSPEC.
The model: “The relativistic reflection model in the lamp-post geometry”

Parameters: 1) a/M; 2) Θ_o; 8) M/M_8; 9) height; 13) density; 33) and 34) amplitude and photon index low-frequency hard lags.

Results

- $a/M = 0.25 \pm 0.12 \text{ GM/c}$
- $\Theta_o = 54 \pm 9 \text{ deg.}$
- $M/M_8 = 0.026 \pm 0.002 \text{ M}_\odot$
- $h = 5.0 \pm 0.7 \text{ R}_g$

Parameters: 1) a/M; 2) Θ_o; 8) M/M_8; 9) height; 13) density; 33) and 34) amplitude and photon index low-frequency hard lags.
On the need of an extended corona (?!)

Discussion (comparison with recent work)

The average arrival times of photons as a function of energy where the accretion disc is illuminated by a vertically collimated corona extending between 1.5 and 10 r_g above the singularity. The overall arrival time including both continuum and reflected photons is shown for fluctuations propagating at varying speed. (from Wilkins+16)
Our model

Lag (in seconds) diluted by primary radiation versus energy (keV) with respect to the (0.1-10 keV) energy band at the frequency of 10^{-4} Hz. Different radial power-law density profiles of -2 (black), -1 (red) and 0 (green) have been considered. The mass of the BH is $M=10^7 M_\odot$ and the adimensional spin, inclination of the observer and height of the primary source are $a = 1$, $\theta = 30^\circ$ and $h = 3 R_g$, respectively.
Conclusions

➢ First lamp-post reverberation model taking into account all known physical aspects is ready for use into XSPEC (Dovčiak, Caballero-Garcia, Epitropakis, Papadakis +, to be submitted in ApJS).

➢ Comparison with the recent reverberation model based on extended coronae (Wilkins+16) does not support the emergency for the use of vertically extended coronae still.

➢ Nevertheless, more work is needed in the future in order to address possible (other) extended coronae geometries (taking into account all the possible physical effects we observe from the data).

➢ To address this goal, collaborative efforts (like FP7-Strong Gravity project) are absolutely mandatory.
Acknowledgements

Financial support provided by the European "Seventh Frame-work Programme (FP7/2007-2013) under grant agreement # 312789".